

Lance Smith, Sean Emerson
Raytheon Technologies Research Center (RTRC)

Project Vision

- Provide a *liquid-fueled, carbon-free, non-cryogenic* aircraft propulsion system for future flight.
- •Leverage the unique properties of ammonia to achieve ultra-high energy efficiency (66%), to help offset the extra weight-per-energy of ammonia.

Nitrogen/Oxyge

REEACH / ASCEND / CABLES Annual Program Review Meeting June 28-30, 2022

This presentation contains no technical data subject to the ITAR or EAR.

ZAPturbo Phase-1 overview: Technical Approach (3 tasks + T2M)

- Use NH₃ thermal properties for significant heat recapture to obtain <u>high efficiency</u>:
 - ➤ Offset weight of NH₃ fuel
- NH₃ cracking with<u>out</u> separation
 2 NH₃ → 3 H₂ + N₂
- Eco-friendly:
 - ✓ Zero-carbon; -and-
 - ✓ Zero-nvPM (no soot!)
- "Open-loop" combined cycle (or regenerative cooling cycle) (or chemical recuperation)
- Maximum benefit obtained with:
 - > High-pressure catalytic cracker
 - > Ammonia turboexpander

Phase-1 technical effort (System & Risk Reduction)

Year-1

focus

ZAPturbo – Team

Team member	Location	Role in project
Raytheon Technologies Research Center (RTRC)	East Hartford, CT	<u>Project lead</u> (prime) for overall system. <u>Experimental tasks</u> for ammonia cracking and turboexpander components.
Pratt & Whitney	East Hartford, CT	System modeling & analysis: aircraft mission analysis; gas turbine performance & integration, flowpath, & weight/cost estimates.
Gas Technology Institute	Des Plaines, IL	Ammonia handling & safety, storage, economics, TT&O / T2M.

Lance Smith (PI) Combustion & Fuels

Sean Emerson Catalysis & Chem Eng. Team Lead

Brian
Holley
Aerodynamics
& Turbine
Performance

Ulf Jonsson Rotating & Fluid / NH₃ Machinery

Bob Dold Mechanical Design & Analysis

Brent Staubach – Advanced Concepts & Technology Group Leader: Oversight of PW system modeling, cycle analysis, & integration Jill Klinowski – Technical Coordinator for Technology Programs: Flight mission & engine-system analysis; engine integration studies

Howard
Meyer
Gas Processing
& Separations,
NH₃ Infrastructure,
ARPAe/T2M experience

Ronald Stanis Gas Conversion Tech., TT&O, Ammonia Energy Assoc. Representative

Travis
Pyrzynski
NH₃ Experience & Process
Safety Management,
Lab Procedures &
Protocols

CHANGING WHAT'S POSSIBLE

ZAPturbo – Optimizing Efficiency with NH₃ & Electric Powertrain

Hybrid-Electric Architecture for High Efficiency

- Cruise-optimized:
 - NH₃ cracking unit: size/weight optimized for cruise power & flows
 - Gas turbine: high-OPR, high-TRIT operation for efficiency @ cruise
 - Gas turbine thrust lapse enables climb power capability: same "reduced" conditions at cruise & climb
- Battery-boost for takeoff power only (recharged during cruise)
- Efficient AC-AC powertrain at turboelectric cruise

	Takeoff	Climbout	Climb	Hold	Cruise	Descend
Time (hours)	0.0833	0.1667	0.25	0.333	5.00	0.50
ESPG Power (% of 26-MW peak)	100%	70%	50%	35%	35%	30%
Power from fuel (% of peak)	70%	70%	50%	35%	35.50%	30%
Power from battery (% of peak)	30%	0%	0%	0%	-0.50%	0%

Use Ammonia's Thermal Absorption Capacity for High Efficiency

- NH₃ thermal absorption capacity, for waste-heat recovery:
 - High heat of vaporization & high heat capacity
 - No NH₃ temperature limit coke-free heating
 - Endothermic cracking (coke-free)
- 2 NH₃ → N₂ + 3 H₂ $\Delta H = 2.7 \text{ MJ/kg-NH}_3$ (15% gain)
- Hot fuel & NH_3 products provide further gains (5 10%)

Challenge: Ammonia Decomposition/Cracking Chemistry

Ammonia Decomposition/Cracking

•
$$NH_3 + \Delta H \rightleftharpoons \frac{1}{2}N_2 + \frac{3}{2}H_2$$

- Endothermic reaction (requires heat input)
- Ammonia synthesis favored at high pressure
- Decomposition favored at low pressure
 - >99.9% conversion at 1 atm, 400-800 °C
- High pressure needed as aircraft gas turbine fuel
- Literature sparse/absent for high-P cracking data
 - Supercritical conditions
 - NH₃: $T_C = 132.35$ °C; $P_c = 112.8$ bar (1636 psia)
 - N_2 : $T_C = -146.94$ °C; $P_c = 33.9$ bar (492 psia)
 - H_2 : $T_C = -240.21$ °C; $P_c = 12.86$ bar (188 psia)

Chemical Equilibrium

Ammonia Cracking Rig Built & Commissioned in Year-1

- Major rig components received from vendor Nov. 2021
- Assembly, modifications, & installation into test facility Mar. 2022
- First cracking catalyst test results obtained Apr. 2022

Initial Catalyst Testing: Kinetics vs Pressure (630 ± 2 °C)

P / psig	T/°C	NH ₃ Conversion / %	NH ₃ rate / mol NH ₃ cm ⁻³ h ⁻¹	NH ₃ rate / mol NH ₃ (g Ru) ⁻¹ h ⁻¹
531.2 ± 0.5	631.1 ± 0.1	18.01± 0.11	1.557 ± 0.010	110.4 ± 0.7
1056 ± 1	630.6 ± 0.1	17.01 ± 0.06	1.465 ± 0.005	103.9 ± 0.4
1517 ± 1	629.8 ± 0.1	16.36 ± 0.05	1.409 ± 0.004	99.91 ± 0.32
2011 ± 1	629.0 ± 0.3	15.74 ± 0.06	1.356 ± 0.004	96.14 ± 0.34
2038 ± 8 (Initial test)	627.9 ± 0.1	15.96 ± 0.07	1.374 ± 0.006	97.47 ± 0.40

- Incremented pressure at constant temperature
- Small reactor bed (5.1 cm³) with high NH₃ flow
- Conversion <20% for estimating differential rates
- Observed slight decrease in activity as pressure increased $\propto \sim P^{-0.1}$

Preliminary Pressure Effect on Cracking (500 – 2000 psia)

- Decomposition rate total/ammonia pressure dependence $\propto P^{-0.10\pm0.02}$ at 630 ± 2 °C
- Preliminary data consistent with expected overall pressure dependence of $\approx P^{-0.27}$ from Temkin kinetics

Catalytic Reactor Testing: Activity Tests at ≥2000 psia

Catalyst Activity Achieved for GHSV ≥ 10,000 h⁻¹

- Targeting 100 L reactor for single-aisle (S.A.) aircraft
- Reactor bed is 40 cm³ (1/2500 S.A. scale) for testing
- Can achieve ≥60 % at ≥514 °C
- Conversion ≥90 % at ≥616 °C

Catalyst Durability Testing: Stability at High Temp. & Press.

Catalyst Stability ≥24 hours

- Activity testing & degreening 71.4 hours prior to stability test
- Conversion ≥88 % at 633 °C for GHSV = 15,000 h⁻¹ & P>2000 psia
- Durability spanned 3-days of testing
- Total durability test time = 25.5 h
- Unattended rig operation will be enabled for 250-h durability testing

ZAPturbo - Addressing Ph-1 Risks: CRACKING, SYSTEM PERF., NH₃ FUEL SYS.

	Almost Certain					
	Likely		4			
Likelihood	Moderate		5 2	1		
	Unlikely		3	6		
	Rare		*			
		Insignificant	Minor	Moderate	Major	Catastrophic
		Consequences				

Risk	#			
Ammonia safety, handling, and/or material compatibility concerns	1 (Ph-1) EH&S, Turbo, Infrastpending			
Unsatisfactory NH ₃ cracking catalyst performance	2 (Ph-1) Promising catalyst activity @ P			
Plant integration: component mismatch across mission (lapse)	3 (Ph-1) System eval. @ Cruise & T.O.			
Plant integration demo: control of transients, startup/shutdown	4 (Ph-2)			
Ammonia combustion: NOx emissions due to fuel-bound N	5 (Ph-2)			
Ammonia combustion: stability & anchoring – unknown @ GT cond.	6 (Ph-2)			

Range Extenders for Electric Aviation with Low Carbon and High Efficiency (REEACH)

Annual Program Review Meeting June 28th, 2022 – Cleveland, OH

